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FixL is a protein sensing the O2 level in plant root nodules
to regulate the transcription of nitrogen fixation genes (nif and
fix) Via a phosphorylation of transcriptional activator, FixJ.1

Rhizobium melilotiFixL with a molecular mass of about 55
kDa consists of three functionally separated domains, i.e.,
transmembrane, heme-binding, and kinase domains.2 Binding
of O2 at the heme iron is related to the regulation of the kinase
activity, i.e., the kinase is inactive in the O2-bound (oxy) form
of the heme domain, while it is active in the O2-unbound (deoxy)
form. This implies that the conformational change in the heme
domain induced by the O2 dissociation is closely linked to the
activation of the kinase domain. However, no structural
information has been available so far which provides molecular
bases to understand the mechanism of intramolecular signal
transduction from the heme to the kinase domain in FixL. In
the present study, we characterized the coordination structure
of the heme iron of water-solubleR. melilotiFixL (FixL* and
FixLN)3 using resonance Raman as well as EPR and EXAFS
spectroscopic techniques.

It is well established that resonance Raman spectra of
hemoproteins exhibit several totally symmetric modes that are
sensitive to the redox state, spin state, and coordination structure
of the heme. The useful lines areν2, ν3, andν4 that appear
between 1560-1590, 1460-1510, and 1350-1380 cm-1,
respectively.4a Resonance Raman spectra of the O2-bound form
of FixL* (oxy-FixL*) are shown in traces B and C of Figure 1
for the16O2 and the18O2 derivatives, respectively.5 In the high-
frequency region, theν4 line (the redox state marker) was
observed at 1376 cm-1, similar to those of the ferrous O2-bound
hemoproteins such as oxymyoglobin (Mb-O2). The frequencies
of the ν2 andν3 modes were located at 1577 and 1502 cm-1,
respectively, which were slightly lower than the corresponding
ones of Mb-O2 (1583 cm-1 for ν2 and 1505 cm-1 for ν3). Both
of the 1577 and 1502 cm-1 lines are polarized (data not shown),
confirming the assignment that the lines are from the totally
symmetric modes. The observation suggested that the porphyrin
core of oxy-FixL* is expanded, compared with that of Mb-O2,
since theν2 andν3 frequencies are linearly correlated with the
distances between the porphyrin center to its nitrogen.6 In the
low-frequency region, we identified the stretching vibration of
the Fe-O2 bond on the basis of the difference spectrum between
the16O2 and the18O2 derivatives (trace D), where a dispersive
pattern was observed around 550 cm-1. The line at 571 cm-1

was assigned to the Fe-O2 stretching mode for the16O2-bound
form of FixL*. The frequency is essentially the same as those
observed for Mb-O2 and HbA-O2,7 suggesting that the bond
strength in the Fe-O2 moiety in FixL* is similar to those in
Mb-O2 and HbA-O2.
In trace A of Figure 1, the resonance Raman spectrum of

FixL* in the deoxy state (deoxy-FixL*) is illustrated. In the
high-frequency region, theν4 line of deoxy-FixL* was observed
at the same position (1355 cm-1) as that of deoxy-Mb, while
theν2 (1558 cm-1) andν3 (1470 cm-1) lines were located in a
lower region than the corresponding ones (1562 and 1471 cm-1,
respectively) for deoxy-Mb. The frequencies of theν2 andν3
lines indicate that the heme iron in deoxy-FixL* is in a ferrous
high spin and a five-coordination state, but the porphyrin core
size is slightly larger than that in deoxy-Mb. In the low-
frequency region for deoxy-FixL*, the strong line is present at
209 cm-1, which was undetectable in the spectrum of its O2-
bound form (see trace B). In general, the Fe-NHis stretching
line is observable in the region from 200 to 230 cm-1 for the
five-coordinated ferrous hemes having imidazole axial ligand4b

but not for the six-coordinated ferrous hemes. We could
therefore identify this line as that arising from the Fe-NHis

stretching vibration in deoxy-FixL*. This finding is clearly
indicative of coordination of the histidyl imidazole as a fifth
ligand of the heme iron in FixL, in good agreement with the
site-directed mutagenesis work by Monsonet al.,1e which
suggested His194 as a candidate of the heme fifth ligand. It
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further demonstrated that the Fe-NHis stretching frequency is
located much lower in deoxy-FixL* (209 cm-1) than those in
deoxy-Mb (220 cm-1) and deoxy-HbA (221 cm-1 in the R state
and 215 cm-1 in the T state),8 showing that the Fe-NHis bond
in deoxy-FixL* is weaker than those in deoxy-Mb and deoxy-
HbA. In other words, the Fe-NHis bond in FixL* is under
tension more than that even in deoxy-HbA in the T state.
We obtained three interesting features of the iron coordination

structure for oxy- and deoxy-FixL*; as compared with Mb, the
Fe-O2 bond strength is similar, while the Fe-NHis bond in the
deoxy state is weaker, and the porphyrin central core is expanded
in both oxy and deoxy states. These structural features were
also manifested in FixLN, the truncated heme domain of FixL*,
since resonance Raman spectra obtained from the FixLN in the
deoxy and oxy states are identical to the corresponding ones of
FixL* (data not shown). Further support for the weak Fe-
NHis bond was provided from the EPR spectrum of the ferrous
NO complex of FixLN at 20 K (trace E of Figure 1), where
three lines were obtained at thegz absorption (gz ) 2.0,AN )
17 G).9 This EPR feature is the same as that of the NO complex
of the HbAR-chain in the T state, in which the NO-bound iron
is in a five-coordination, indicating that the Fe-NHis bond in
deoxy-FixLN is weak enough to be cleaved upon the NO
coordination in the frozen state. In addition, we found by
EXAFS measurement that the Fe-NHis bond distance in deoxy-
FixLN (2.14 Å) is significantly longer than that in deoxy-Mb
(2.10 Å).10 The results from these different measurements, i.e.
resonance Raman, EPR, and EXAFS, are well consistent with
each other.

Our present findings remind us of the weak Fe-NHis bond
(ν(Fe-NHis) ) 203 cm-1) in Hb from Mollusc Scapharca
inaequiValVis, which is exerted by a steric interaction of the
Fe-His moiety with Phe97. This interaction is significantly
involved in cooperativity of this Hb.12 On the other hand, we
know that the conformational change caused by a change in
the Fe-NHis bond plays a crucial role in the intramolecular
signal transduction in HbA and guanylate cyclase.13 The
resonance Raman spectra of the cyanomet valency-hybrid Hb
and the Fe-Co hybrid Hb revealed the weak Fe-NHis bond
(ν(Fe-NHis) ) 206-207 cm-1) in their R-subunit,14 which is
closely involved in an allosteric effect of the molecule. From
these facts, it is likely to suggest for FixL that the weak Fe-
NHis bond might be related to the mechanism in the activation/
inactivation of the kinase domain (catalytic site) upon the O2

dissociation/association in the heme domain (regulatory site).
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Figure 1. (A) Resonance Raman spectrum of FixL* in the deoxy state.
The spectrum in the high-frequency region was excited at 413.1 nm,
while that in the low-frequency region was obtained by 441.6 nm
excitation: resonance Raman spectra of (B)16O2-bound and (C)18O2-
bound FixL* excited at 413.1 nm; (D) difference spectrum between
traces B and C; (E) EPR spectrum of the ferrous NO complex of FixLN
at 20 K.
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